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FOREWORD

A major problem in all engineering design is that of reliability and
quality control. Standard procedures exist for assuring the desir.d reli-
ability under ordinary circumstances. This report describes an unusual
situation, in which the tolerances on the components of an assembly are
not small enough to ensure that the assembly will work properly, and provides

estimates of the probability of a defective assembly in this case.
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ABSTRACT

This report describes an investigation of how errors in components of an
assembly can affect its performance. In particular the report de: : with the
situetion, uncommon in engineering practice, where the om:tput tolerance of
the ascembly may be violated even though the tolerances on the components are
all met. This situation is analyzed to estimate the probability that the
output tolerance will be satisfied given that the component tolerances are
met. Three methods are described for estimating this probability, their
results are compared in a number of cases, and a best method is chosen.
Several simple rules, suitable for preliminary estimates, are also given.

An example is worked out showing a simple spplication of +he method.
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1. INTRODUCTION . P

This report deals with certain aspects of the general problem of errors

. and tolerances in the design and testing of equipment. It is presumed that

B

the piece of equipment is required to operate at a certain level of output.
Ordinarily the designer assigns a certain error—tolefance to this output,
chosen so that the equipment will functioﬂ properly if the output error
satisfies its tolerance. The output error usually arises from 2rrors in the
various components that have been assembled to make the piece of equipment.

: The designer will customaerily know the relation between the output error and

the component errors. Common practice (see Bowker and Lieberman(l)) is

that the designer will combine thié relation with the output tolerance to

fina tolerances on each component such that satisfaction of these corponent

tolerances will ensure that the output tolerance is met.

We are concerned here with the uncommon situation where satisfaction

of the componeat tolerances does not ensure satisfaction of the output

tolerance. This state of affalrs can arise when an error has been made in

choosing the component tolerances, or when it is impractical (or too expensive)
t0o make the component tolerances small enough. In either case we must face

the possibility that all the components will meet their tolerances but some g

of the assembled pieces of equipment will not work properly. The practical %

information that we want is the probability that the output tolerance will




1 ba satisfied. With this information we can estimate how many extra pieces !
of equipment must be manufactured on the average in order to obtain a given

number of workable assemblies. .

In the fcllowing section we shall describe the general procedure for
estimating the probability that the output satisfies its tolerance, supposing
that each component error is normally distributed with zero mean, known

variance and known tolerance. Three mathematical methods are given for

carrying out the calculations. One is of Monte-Carlo type and is described {
H
in Section 3. The other two methods use the Characteristic Funetion in

different ways. Section 4 gives formulas for the Characteristic Functions of

the various distributions, and Sections 5 and 6 use these formulas in

ing cases are examined in Section 7. Section 8 describes the results, which

i
i
estimating the desired probability. Various simple approximations and limit- ’
are then discussed in Section 9. The report closes with a simple example of I

{

how these estimates might be used in practice, Section 10.
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We let Yj be the error in the j-th component, J: 1, 2,’-.N ’
and X, is the error in the output. The relation between the cutput error

and the component errors is taken as linear,
- ~
XO_ ij Y J
3= .
where the C j are assumed to be known constants.

It is assumed initially that Y 3 is normally distributed with zero mean

and variance 0"‘2 . Then we may define

N

=G

5= \Cj‘ T
and the relation (1) can be written

2
X = x
° Ja Y

where X J is normally distributed with zero mean and variance S j,- .

We let D3y»0 be the tolerance on the error, Y., in the j-th component,
and BO)O be the toierance on the output error, X,. Thus, when Yj satisfies

its tolerance,we have

IY;1< D;

(1)

(2)
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and, if X, satisfied its tolerance, then

|X|<B, -

We define also
=1C.ID. (&)
B;=|G|0; |
as the tolerance on XJ, so that, if XJ satisfied its tolerance, then
%< B;
We notice also that
Bi/S;=D/05 - (5)

We now define certain probabilities. PJ is the probability that the

J=th. error satisfies its tolerance, i.e.,

P, is the probability that all component errors satisfy their tolerances. We

assume that the component errors are independent of each other, and therefore

R= prob[\)(j\é B; fos A J) (7
. N
| - ::"}I PJ = P‘Pz...PN

P, = prob[ 1l Dy = prob(1¥;1<B)] © -
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Further, ve define

P, = prob [ the output error satisfies its tolerance and all component
errors satisfy their tolera.nc'esj
. Wy ! . .
Py = prob [ lXo\é Bo and ;Y:’\é BJ for all JJ

The theorem on compound probability a:;ser{;s that
= A< R :
Py = prob [ \Xo\é Bo , 8lven that \XJ‘ < BJ for all j 7
% prob [ \XJ‘$ BJ for all JJ
The probability that is of greatest practical interest is
P* = prob [ ‘Xolé Bo , glven that \XJ\ < BJ for all JJ

Then we can write (9) with the aid of (7) and (10) as |
N
PP=R/R = R/TTG

Finally, it is useful to define

N N
A= 2 B = 21GID;
J= Y J=\

If all. the components satisfy their tolerances, then, using a familiar

property of inequalities, we find
N N N
Xl =12 %= 2 Ikl €2 8,
e =| J=1 3=‘ J

and so, because of (12), X, must satisfy the inequality

XJ<€ A

2@

(8)

(9)

(10)

(11)

(12)

(13)
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1r A& B then (13) implies
IX| <A< B,

In this case we see that, if each component satisfies its tolerance, the
output error X, must always satisfy its tolerance, and from (10) and (11)

we conclude that

P=1. P=P

)

This case is the common one in design practice, i.e., the tolerances are set
so that, if each comporent meets its tolerance, the output will necessarily
satisfy its tolerance. However, in this paper we are Interested in the

opposite cese, where

and
o<P'<1

Our main objective is to estimate P¥., We define F* (Xo) at the density
function of the output when the separate component errors all satisfy their
tolerances. Since the component errors are normally distributed, their density
functions, when they satisfy thelr tolerances, are symmetrically-truncated
normal distributions, and F* (Xo) is the density function of a finite sum of
such distributions. P¥ is the integral between -B, and By of F* (Xg).

Unfortunately F* (X,) is not easily expressible in terms of the parameters

e o]

b




of the component density functions. However, we can meke a nuwaber of simple
comments about the behavior of F* (Xo).

(1) If the component error tolerances are all very large, i.e.,
Eﬁj:ﬁ>'5ii s each component error is approximately normally distributed,

hence F* (X,) is epproximately a normal function.

(ii) If N, the number of error components, is large, the Central

Limit Theorem leads us to expect that F¥ will be approximetely a normal function.

(i11) Contrariwise, F* will depart furthest from normelity when some
BJ/SJ are small and when N is small. Thils will be particularly so when one

component dominates all the rest, so that effectively N = 1.
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3. MONTE-CARLO METHOD

o

This method is based on counting the numbers of successes in sampling
from distributions that are random, independent and normally distributed N

1 with zero mean. A computer program was written to carry out this procedure.

g The program has as input the quantities Cj, D (=1, 2, «o. N) and

f! : By, together with the list of random numbers. L sets of N random numbers are
% read in successively. For each set, the N random numbers are taken as the
values of ¥y (J =1, 2, ... N), and the value of Xo is calculated from (1).

Counts are made of the following quantities:
nj () =1, «oc N) is the number of cases for which ‘\3\ < DJ
ns is the number of cases for which \YJ\ < DJ for all J.

no is the number of cases for which ‘Ydlé DJ for all J

and |Xo|$B° b

Then we obtain the estimates

PJ = nJ/L .j = l, 2, eee N
|
, !
’ Pe = ne/L
(I | '
| P¥ = Po/Pc = no/nc.
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In using this method we had to choose L large enough so that reasonavly
stable estimates of P* were obtained. The choice L = 200 was used, and the
entire procedure repeated four times with different sets of random numbers.
The final estimates of the probebilities are given as the means of the results

for the four repetitions.
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4., CHARACTERISTIC FUNCTIONS

The remaining two methods of estimeting P¥ employ the Characteristic
Function (or Fourier Transform) as the main tool in the analysis. In this

section we present the general formulas that form the basis of thase methods.

o

If F (X) is a density function, then -

Xa oo
-itX (14)
¢ = | e F X dX
Xz-co
is 1ts Characteristlic Function or Fourier Transform. It is unnecessery to
dwell on the properties of the Characteristic Function w;rhich are well-Kknown.
We record only one formula, which is easily derived from the Complex Inversion
Re';.a.tion'
’ % O
= 11 o T
[ rada = w1 ¢+ sintkx) dx (5) .
o= ~=X t=-00
This formula expresses the area under the density curve between -X and X
(or the probability that the variable lies between -X and X) directly as an
integral of (t)-
We define Fy (X;) as the density function for Xj and d? ) as the
coi'responding Characteristic Function. Simileriy 31)0 (‘t) is the Character-
istic Function of the output distribution, F* (XO). Since the XJ are assumed
to be independent, it is well-known that
N
® ) = T ¢, (1) (16) .
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Both methods of estimating P* are based on finding c\>° (*) from the q‘J (1)
by meens of (16).

To find ¢ ;(©  ve first write down the density function of Xj,

2
which is that for a normal distributior with variance 5\3 ,» truncated at

+B3, 8; ” s* ~1 ) _1,(15.,_)
F(xp=1 [ €279 du} e RN
u=h - X1 < B
=0 IX;1> 8

This is then substituted into (1&); and we fird, after some manipulation,*
-P_ : .
e v (¥ + 3
Aty =2 ——— Re_ et i g 5 J)
ck’( ) erf ¥ it *f

where

= §/{5VE) >o0
Fi S/ VN2

A series representation of *J (‘t) in real terms may be derived by

expanding the Error Function in a Taylor Series about XJ « By means of

(A.5) we find

—- "/"2. 1 7_“H )
e=e{1-an e Z( ém)l

*For completeness & list of the basic formu as relating to the Error

Function is given in Appendix A.

(17)

(13)

(19)

(20)

S dia
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where H is the Hermite Polynomial of degree k. This series converges
absolutely for any finite values of @y and Y- Further, we may expand
e P J about FJ = 0 and obtain explicitlythe leading terms {up to tl")

in the expa.nsion of ﬁ(‘t) about t = 0,

piw=1-5(1-

(8

_yz =¥,
Bt (tr)

4 | -12 3+2 e_J
+SJ {3*- 2T —L(_evﬁgb%) }(‘tﬂ/l}\)

Although the series in (20) converges for any finite values of fJ and
)3 » the convergence is slow when PJ is large, and an alternstive method of
computation is needed. For this purpose it is convenieﬁt to use the real
and imaginary parts, W, and Wi, of the complex fuaction, W, defined in (A. 9)

From (l"() , (A.10) and (A.11) we obtain the exact formula
2 I,

. r - _ ' ‘
%‘(t)'-'- a-:—‘{-j"'“ié £ -c 4 {erpj 4'1.33) cos ((SJ't)
—‘W_'L(Rs +1%) sin (Bj‘tﬂ}

A rational ap roximation for W is given in (A.12) , and from it we may derive

the following approximations for W, and Wj:

3 | N .
W tay= Y R geng a8 g + B
=\
3
Wi+, {( Pictiy ¥ Bt/ (ot + e:t‘-)}

4

(21)

(22)

(23)

(24)
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Here ;

and VT and \’]K are constants of the approximation, listed in Appendix A,
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5. APPROXIMATION USING MOMENTS

This methdd consists of assuming that the output density function is

approximately of the form . ~
=X /(2.5%)

a(x)= sTam) e, +6, (7 + G /e

where Gg, Go and G) are constants to be determined, and 52 1s the exact second

moment of the output. The constants G, 62 and Gh are chosen by matching

moments, i.e., by using

o
2K — ) .
X Xo S(X")Ax".- MZ.K ’ k=012
-00
where MlK are the exact, even-ordered moments of the output distribution.
My, My and M) are determined by using the well-known relation

2K
K dd tq;j& ( o)

S
Ma = 01)

Because the 4> i (¥) are characteristic functions and are all even in

t, we have

do)=1, &)= &"(®) =0

Differentiating (16) and using (29) we find

(26)

(27)

(28)

(29)

P AT e
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¢(oh=1
"i¢’0) o
N e
M,=-4 "= };l[-%f(o)]
M3 = A 4)0’”(0) =0
v H 2 ] u u &
M= ¢, (0)= 3[4’0 (o) + Jz"“ﬂ (0) - 3{% (0)} ]
From (21) we obtain |
- ch”(o)= Sd'l {\ — [Z'J A’(ZJ)/A(ZJ)]}

¢ )= 50 - A AZNG + 20

where

;/z

e B/S

and the functions A and A' are defined in (A.2) and (A.6). We calculate

Mo and M), by inserting these values in (32) and (34).
If we combine (26) with (27) and use the gereral formula

@2y "j an VA L gL

we obtain the following lmear, algebraic equations for

-\' (:zk -1, wy

15

(30)

(31)

(32) |

(33)

(34)

(35) : _

(36) ¢

311 -

(38)

%5




Go, Gp and Gyt
G‘.D + GL + G-q E 1
G, + 3G, *I5G, = M, /S* =1 {32)

3G, +15G, + 105G, = My /S=M_ /M >

This system is solved for Gy, Go and G), the results are inserted into

(26), and we can then calculate the spproximate P* by means of

S Bo
P = [ 00 =2 3 0dx,
—Bo ' (o

Using the general relatior (38) again we find the follcw‘ing formula Tor P¥*
2 /
PB)= A@ -HZB-Z2)AR)  (x0)

where

H= {3 - (M..',/M:)}/IL" (41)
£=8,/S (42)

We shall call the estimate of F* given by (lLO) the mowent apprcximation.

-




-

6.  NUMERICAL INTEGRATION OF THE CHARACTERISTIC FUNCTION

This procedure consists merely of carrying out the integration of (15),

i.e., evaluating 8
p* - %F‘(xg)gxf (20§ ¢ (b t1sin(Bt) dt (43)

where 430(1—) is calculated from ¢ NEY) by (16). The ¢J (t)

are evaluated by use of (20) vhen p; is of moderate size and (22) - (25)

when f’J is large.

In general it is necessary to evaluate the integral by numerical means.
To carry this out with sufficient accuracy is sometimes dificult because
?o('t) dies away in oscillatory fashion as t—{D .. Usually, most of
the contribution to the value of the integral comes from near t = O, but
significant contributions can also come from further out, where ¢°Lt)
may oscillate rapidly. In cases Where a significant contribution comes from
the region of rapid oscillation, the integration must be carried out with

great care.

The following procedure was adopted for carrying out these integrals.

A fundamental range of t say T, was chosen, roughly small enough so that

&[4 4,0 sin B.1))

has no more than 5 zeroes in the range (n-1}JT €t £nT forn =1, 2, 3, .. M.

17
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M 1s taken so large that the ranges beyond n = M contribute negligibly to
the integral. For each range of t the integrel was evaluated by Gaussian
Integration, and the total integral obtained by adding the results for ail
the ranges. Some experimentation was needed to find a suitable number of

points tc use in the Gaussian Integration and to dete'rmine how large M should

be.

The computer program that carried out this evaluation of P¥ was

occasionally slow-running and was used primarily for svotechecking the results

of the other methods.
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T. SIMPLE APPROXIMATIONS AND LIMITING CASES

A number of obvious, simple approximations for P¥ can be derived, and

we describe three of them briefly here.

(1) If all the component tolerances are very large, i.e., if

DJ/OB = BJ/SJ > l

"uv- a\l j

the distribution associated with each X J is approximately normal with variance

2
S s . Then F¥ (X,) is approximately a normal distribution with variance

A
SI , Where

[ S

N
st =5 st
1 £

1

Hence we may write this estimate of P* as a function of B, in the form

P (8,/S)= A(B./5)

(45)

(ii) A different approximation may be obtained if we assume thsat

F* (X,) is a .aormal distribution with variance

ixX,\=T1, i.e.,

F*(XD) =0

In this case we find the following estimate

Snl , truncated at points

X! Z T,

P (B/SD)= AB/Sp)/A(T/S), B<r,

=1

?

B>T

o~ "o

- —
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The properties of the error function imply that
+ *
Pn (Bo/,sn-)z PI (&o/ 51) (46)

The accuracy of this approximﬁtion depends on how well F* (X5) is
approximated by & truncated normal distribution and ﬁow precisely we can
estimate ®,. There are two cases in which this approximation mey be
tolerably accurate. First, if one component, say the L-th, dominates the

L p 8 -
others, i.e., SL v? SJ J¥+ |0 the output will be approximetely

)

that of the dominant component, X1, which is & normal distribution truncated
at +Br. In tLis case we expect that B!,[.(B"/SR} with T, = By, will be a
fair approximation to P¥, Second,' if all the C j are rovghiy equal, and ail
the Zj are roughly equal to Zj, say, then we expect thaf F* (X,) will be

2
approximately & normal distribution with variance 51 truncated at

To =Ty

%
Hence in this case also %[ (BJ SI.) should be a decent approximation

to Px,

(111) A third simple approximation is obtained by setting G = O in

(26) and choosing G, and G, such that
OO
§ 2 quyd, = My for K=o,
-0

Then we get as an approximation for P¥ merely the first teru of (42) )

P @)= A@). . _ (s7)
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8.  RESULTS

A1l the cases discussed here have four components, i.e., N = L, and all
have (!3 =1, =1, 2, 3, k. Eleven different cases were studied with various
values for the Eﬁ and Cj as shown in Table 1. For each case results were
obtained in the form of graphs of P¥ as a function of B,/Sy and are displayed
in Figures 1-~11. Each graph shows the mean and standard deviation of the
four repetitions of the Monte-Carlo Method as well as the moment approxima-

tion for that case. The values of Sp, My = 82 and Mh are listed in Table 2.

The method of integrating the Characteristic Function was used only at
points where sizeable discrerancies were found between the Monte-Carlo ..sults
and the moment approximation. These points' are shown oh the appropriate

graphs and compared with the other methods in Table 3.

Several additional graphs show comparisons among the moment method
predictions for different cases. The comparison among Cases (I), (II) and
(III) is shown in Figure 12, Cases (VI), (VII) and (VIII) in Figure 13 and
Cases (IX), (X) and (XI) in Figure 1Lk. Also, the simple approximation

Pi* is shown in Figure 12, and PII* in Figures 13 and 14 for relevant values

of T, .

21
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9. DISCUSSION

We shall first compare and comment on the results obtained by the variocus

methods, then suggest procedures for estimating P*¥ under various circumstances.

Figures 1 to 11 show that the agreement between the Monte-Carlo method
and the moment-approximation is reasonably’ good in a general sense. We see
from Table 3 that, when the results do not agree well, the integration of

the characteristic function almost always agrees with the moment approximation.

Of the three methods one expects that integrating the characteristic
function should be the most accurate. The Monte-Carlo method is usually
thought to be somewhat inaccurate unless a very large number of samples 1s
used, and the above results suggest that this is the case here. Procedures
like the moment-approximaticn are fairly common in statistics and often
give satisfactory accuracy. However, there are two theoretical defects of
the moment-approximation here that are worth mentioning. First, the approxi-
mate density function g (¥,) is continuous (see Equetion (26)) but the true

density function, F* (X,), is discontimuous. In Tact
* —
F (X)=0

when X,>&A . Second, g (X,) is slightly negative for X, sufficiently
lafge in meny cases. Nelther of these defects seems to cause serious errors
in the estimate of P* for the cases studied here since the resulis agree
well with the integration of the characteristic function. If serious errors

are to erise, one would expect to find them when there is a single, dominant

22 g
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component with a low to_erance on it, as in Case (VIII). Table 3 confirms

this expectation, for we see that, when Bo/SI = ,945, the characteristic

function and moment-approximation differ by .Oll, whereas the worst error

observed in the other cases of Table 3 is only .00l. However, even in this
most unfavorable case the error in the moment-approximation is small enough ,

to be unimportant.

Figure 12 shows how curves for P¥ change as the common tolerance value
for the four components increases from Bj/sj = 1 through 1.5 to 2. As we N
expect, the curves become lower and tend toward the normal curve, given by

Pr*, with increasing component tolerances.

The effect on P*¥ of an increasingly dominant component is displayed in |-
Figures 13 and 14. Figure 13 shows the case where the increasingly dominant

component has a smaller tolerance than the other components. As C; increases

B o VN p——

; o from 1 through 2 to 5, the curve of P*¥ is raised toward the curve for PiI* i

truncated at BO/SI = 1, to which it must ultimately tend. In contrast

Figure 14 shows what happens when the increasingly dominant component has a
higher tolerance than the others. As C; increases from 1 through 2 to 5,
n the curve for P¥ is lowered toward the curve for PII* truncated at

B,/S; = 2, to which it ultimately tends.

When all the Cj are roughly the same, we may also inquire about the

effect of changing the component tolerances but keeping the average component

T—T

tolerarce constant. Comparing Cases (II), IV) and (V) we c-e that this has

e oA o e ¥

A"
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scarcely any effect on P¥. In other words, when the CJ are roughly equal,
the mean component tolerance has a considerable influence on P* (see Figure

12) but the variance in the component tolerances has negligible effect.

i A reasonably extensive comparison of the éimple.approximations, 7)),
(48) and (49) with the more accurate calculations suggests the following as
; K - .
i : a rule:

(1) Use Ppy* 1if one component dominates greatly.

| (11) Use Pp* if BJ/SJ $ 2 for all j.

i (111) Use Prrr* 1f no one component dominates.

{ Use of this rule will give fair results, perhaps suitable for an initial

estimate. The simplest accurate procedure is the moment-approximation,

given by (42) - (44).
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10.  WORKED EXAMPLE

A certain piece of mechanical equipment is supposed to operate at a
ioad of 900 1lbs. Three components, stendard items, are assembled to form
this mechanism. Components 1 and 3 are springé and component 2 is an
electrical switch. Their component errors, ¥y, Y5 and Y3, are related to

the error in the output load by (1) where

Cy = 240 1b/inch
Cp, = 15 1bs/volt
C3 = 210 1b/inch

From information about the manufacture of the components we know that the

distribution of their errors is roughly normael with zero mean and

#1: 60% are acceptable at a tolerance of .l-inch
#2: T0% are acceptable at a tolerance of 1 volt

#3: 92% are acceptable at a tolerance of .l-inch

From Tables of the normal distribution we find the standerd deviaticn @

J

ac follows:

#1: .8 acceptable corresponds to .1 = 1.28 ay
CI = .0781-inches
#2: .7 acceptable corresponds to 1 = 1.0k Ug

05 = ,962 volts

25

s i

~
a4 b




Qi " e

#3: .92 acceptable corresponds to .1 = 1.75

o

03‘ = 0571 inches

Then
g1 = 240 x .OT6L = 18.7 1bs.
15 x 962 = 1k.4 Ibs.

So
210 x .O57L = 12.0 1bs.

53
The tolerances established on the components are

D; = .15 inches, Dy = 2 volts, D3 = 07-1nches

and therefore from (4) and (12)
By = 36 1bs, B, = 30 lbs, B3 = 14,7 1bs.

O = 80.7 1bs.

The tolerance on the load needed to activate the mechanism is

By = 30 1lbs.

4
Since B, </ we know that 049 €1, i.e., we know 1t is possible that

each component will satisfy its tolerance but the tolerance on the load will

be violated.

First we find a quick, rough estimate of P¥., In order to determine

which one of the simple estimates, (45) - (47), is best, we find from (37)

Z=8/5 =\, %,=20%, Z,=12%
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These are not all > 2. Also none of t... Cj dominates all the others. The

rule stated at the end of section 9 suggests, therefore, that we use P&II'

To find Pyyr we need to find My by means of (32) and (35). From the tables

of the normal function we find
AZ)=,au6, ARy = s, | A(E)=.11%
AR)= 0,  AE)=.on, AlR)=.319
Putting these values into (35), then combining the results with (32) ve get
M,=H80,  S=219

From (42) Z = 30/21.9

1.37. Using the estimate (47), the normal function

table gives

Prrp* = A (1.37) = .829

The more accurate approximation (MO) involves finding Mh in addition to
M,. The calculation of M) by (3k4) and (36) leads to M, = 625,000. Putting

this into (41) and combining with (40) we find
P (2) = .829 - .006 = .823

Thus, if all components satisfy their tolerances, the probability that
the mechanism will operate at a load between 870 and 930 lbs. is sbout .82,

On the average, therefore, if we need 1,000 workable mechanisms, we should

27
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expect to assemble about
1000/.823 = 1215

out of satisfactory components.
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APPENDIX A - FORMULAS RELATING TO THE ERROR FUNCTION

The following are fundamental formulas relating to the Error Function

and are taken from Reference 2,.
Z .
- -0* .
erf{(Z)= 21 ""j e du (A.1)
(o]

In {A.1l) the integration may be carried out along any path in the complex

U-plane connecting U=0 and U=Z, An alternative definition is

-\/2 | =1/2 > ~-X/2 |
A(E)= ert (2722) = ) [ 2d) (a.2)
A2
We have also _
ecf(-2)= ~evf(E) | (4.3)
et (2)= erf (D (Al

where the bar denotes the complex conjugate.

Various derivatives of these quantities can be found from
K+ K -\ /1 -11
K20

N@E dAAL = @/me =

where Hy (Z) 1s the Hermlte Polynomial of k-th degree. Thcise satisfy the

relations

[




H®)=1, H@H=22 )
) H, ®=2ZH ® - 2kH,_ (). (1.8) |
' |
Also we list several formulas involving the complex function W. ;.
’ r

WE=W, (Z)+ Wi @)= & * [1- erf(-32) (8.9)

erf ()= 1- W(i%E) e (A.10)
f and | . i
ok W& = W(-2) - (a11) |

{

W (2) may be found from the rational approximation

3
] 2
WE=i% 2 W/(@-n) +e® (r12) |
. provided W,.> 239 or Wa>3 . The error €(Z) satisfied the inequality
‘ le@)l& Ax \O_‘ . The constants ¥ and N, have the following

values

r= .qe\slss‘, q: ,o’i‘l‘l‘n\c)\;:,wlttsiﬂ'%

M= o163, = LT, n= S.5A5 34T,

X P 5. M e i
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1 I
j
;
o
g Case
I
E 1T
' III
3 v
P
|
| -
[
VII
;
; VIII
H
X
f X
K ¢ X1
1
} 1
: i

TABLE 1

1 1 1 1 2 2
1 1 1 1 1 1.5
1 1 il 1 1 1
1 1 1 1 1 1.5
2 1 il 1 it 1.5
5 1 1 1 1 1.5
1 i 1 1 2 1
2 1 1 1 2 1
5 1 1 1 2 1

Component Error Coefficients (Cj) and Tol-

1.5

1.5

1.5

105

erances (Dj) in the Eleven Cases Studied
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TABLE 2

Case SI M2 Mh
|

I 2 1.165 3.709 !
1
I

It 2 2.206 13.53 l

ITI 2 3,095 27.22 "

v 2 2.168 13.10 !
N

v 2 2,130 12.67

VI 2 1.946 S 10.47

VII 2,646 2.819 21.60 ‘

VIII 5,292 8.933 182.5

X 2 1.647 7.490

X 2,646 3,968 %0.90

XTI 5.292 20,22 988.5

The Standard Deviation, Sy, of the Output
Distribution Calculated by the Normal Re-

lation, and the Output Moments M2, Mh’ in

the Eleven Cases Studied
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Case

(1)

(111)

(Iv)

(v)

(v)

(vI)

(VIII)

(X)

(X)

(x)

TABLE 3
P px

Monte  Char.
Bo Bo/gI Carlo Function
1.6 .8 .822 .858
2.8 1.k .860 .387
2.4 1.2 .870 .896
1.2 .6 .603. <579
2 1.0 849 .825
1.2 .6 612 «599
5 «945 .928 .915
1.2 .6 677 639
2.h 1.2 912 <940
3.175 i.2 907 .886

Comparison among the Values of P¥ given
by the Three Methods of Calculation for

Various Cases and Tolerances

3k

Px.
Mom.
App.

.858

837

.896

.580

.825

«904

640

«9k0

.886
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Pigure 1: P* (By/S1) in Case I. The curve is -he

moment approximation, (40), and the circles

are Monte-Carlo estimates
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Figure 2: P¥ (B,/S1) in Case II, The curve is the

moment epproximation, (40), and the circles

are Monte-Carlo estimates
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Figure 3: P* (B,/S7) in Case III. The curve is the

moment approximation, (40), and the circles

are Monte-Carlo estimates
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i Figure 4: P* (B,/S1) in Case IV. The curve is the

% moment approximation, (40), and the circles
- are Monte-Carlo estimates
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Figure 5: P¥ (B,/S1) in Case V. The curve is the

moment approximation, (40), and the circles

are Monte-Carlo estimafes
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Figure 6: P¥ (Bo/SI) in Case VI. The curve is the

moment approximetion, (40), and the circles

are Monte-Carlo estimates

o :

T T—— . e R A R




‘ vl A e el n LA " P PN W S,

§ 0 _ L i 1 - g
. 0 5 10 15 20
| B./Sy

Co L .
T PC PP RS L e g o | R

Figare T: P* (By/Sy) in Case VII. ™he curve is the |

moment approximation, (40), and the circles Ig. 1
4
1

are Mon® :-Carlo estimates
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" Figure 8: P* (By/Sy) in Case VIII. The curve is the

moment epproximation, (40), and the circles

are Monte-Carlo estimates
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Figure 9: P¥ (B,/S1) in Case IX, The curve is the
moment approximation, (40), and the circles

are Monte-Carlo estimates
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© Figure 10: D2¥ (BO/SI) in Case X. The curve is the

moment approximation, (hO), and the circles

are Monte=-Carlo estimates

Wl

WA L S R S LR ST Bt SR N ¥ b s e b

g TR




YT T I T

iy oty v

1.0

0 | | 1 |

0 S 10 1.5 20

BO/SI

Figure 11: P¥ (B,/S;) in Case XI. The curve is the

4

moment epproximation, (40}, and the circles

are Monte~Carlo estimates
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Figure 12: Comperison of P¥ (BO/SI) for Cases (I),

(11), (III), using moment prediction,

and P* I .
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_ Figure 13: Compariscn of P¥ (Bo/S) for Cases (VI),
(Var), (VIII), using moment prediction,

and PxII .
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' Figure 14: Comparison of P* (B,/81) for Cases (IX),

(x), (XI), using moment prediction, and

PX-II.
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